
Management of the Septic Patient:

New Definitions & New Guidelines

Burton W. Lee, MD, FCCP Visiting Professor University of Pittsburgh School of Medicine February 2017 burton.w.lee@pitt.edu

GOALS of the LECTURE – TO REVIEW

- 1. New Definitions of Sepsis and Shock
- 2. New Surviving Sepsis Guidelines 2016

45M with fever, cough, and dyspnea for 3 days. T 40.0 C, BP 110/70, HR 100, RR 26. Looks acutely ill, lethargic and disoriented. Rales at the R lung base. Urine output 5/hr. WBC 15x109/L, Hb 8.2 g/dL, Platelets 180x109/L. Na 138, K 4.9, Cl 105, HCO3 18, Cr 2.0 Lactate 6 mEq/L. Urine analysis is unremarkable.

A sputum, urine, and blood cultures are sent.

Chest film - right lower lobe infiltrate.

This patient has:

- a) Bacteremia
- b) Sepsis
- c) Severe Sepsis
- d) Septic Shock

OLD DEFINITION

SIRS

WBC; RR; T; HR

Severe Sepsis

Sepsis + Organ Failure Or Lactate

MR 20%

Sepsis

SIRS + Infection

Septic Shock

SBP < 90

MR 16%

MR 46%

OLD DEFINITION

SIRS

WBC; RR; T; HR

Severe Sepsis

Sepsis + Organ Failure Or Lactaic

MR 20%

Sepsis

SIRS + Infection

Septic Shock

SBP < 90

MR 16%

MR 46%

NEW DEFINITION

Sepsis

Infection

Dysregulated Host Response

Organ Dysfunction

SOFA ≥2

Septic Shock

Vasopressors & Lactate > 2

MR 40%

MR 10%

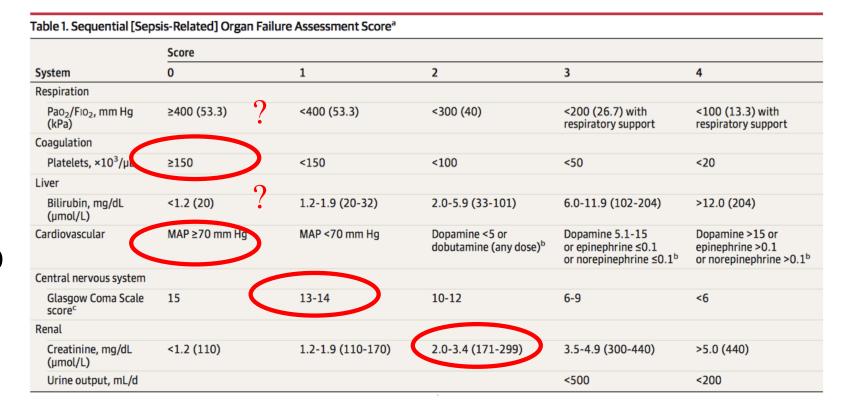
Table 1 Sequential [Sensis-Polated] Organ Failure Assessment Score

	Score					
System	0	1	2	3	4	
Respiration						
PaO ₂ /FiO ₂ , mm Hg (kPa)	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<100 (13.3) with respiratory support	
Coagulation						
Platelets, ×10 ³ /μL	≥150	<150	<100	<50	<20	
Liver						
Bilirubin, mg/dL (μmol/L)	<1.2 (20)	1.2-1.9 (20-32)	2.0-5.9 (33-101)	6.0-11.9 (102-204)	>12.0 (204)	
Cardiovascular	MAP ≥70 mm Hg	MAP <70 mm Hg	Dopamine <5 or dobutamine (any dose) ^b	Dopamine 5.1-15 or epinephrine ≤0.1 or norepinephrine ≤0.1 ^b	Dopamine >15 or epinephrine >0.1 or norepinephrine >0.1	
Central nervous system						
Glasgow Coma Scale score ^c	15	13-14	10-12	6-9	<6	
Renal						
Creatinine, mg/dL (µmol/L)	<1.2 (110)	1.2-1.9 (110-170)	2.0-3.4 (171-299)	3.5-4.9 (300-440)	>5.0 (440)	
Urine output, mL/d				<500	<200	

SOFA ≥2
PF <300
PLT <100
Bili >2
Pressors
GCS ≤12
Cr >2

NEW DEFINITION

Sepsis


Infection
Dysregulated Host Response
Organ Dysfunction

Septic Shock

Vasopressors & Lactate > 2

MR 10%

SOFA ≥2

SOFA ≥2
PF <300
PLT <100
Bili >2
Pressors
GCS ≤12
Cr >2

NEW DEFINITION

Sepsis

Infection

Dysregulated Host Response

Organ Dysfunction

Septic Shock

Vasopressors & Lactate > 2

MR 10%

SOFA ≥2

SOFA ≥2
PF <300
PLT <100
Bili >2
Pressors
GCS ≤12

	Score				
System	0	1	2	3	4
Respiration					
Pao ₂ /Fio ₂ , mm Hg (kPa)	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<100 (13.3) with respiratory support
Coagulation					
Platelets, ×10³/μι	≥150	<150	<100	<50	<20
Liver		<u> </u>			
Bilirubin, mg/dL (μmol/L)	<1.2 (20)	1.2-1.9 (20-32)	2.0-5.9 (33-101)	6.0-11.9 (102-204)	>12.0 (204)
Cardiovascular	MAP ≥70 mm Hg	MAP <70 mm Hg	Dopamine <5 or dobutamine (any dose) ^b	Dopamine 5.1-15 or epinephrine ≤0.1 or norepinephrine ≤0.1 ^b	Dopamine >15 or epinephrine >0.1 or norepinephrine >0.1
Central nervous system					
Glasgow Coma Scale score ^c	15	13-14	10-12	6-9	<6
Renal					
Creatinine, mg/dL (µmol/L)	<1.2 (110)	1.2-1.9 (110-170)	2.0-3.4 (171-299)	3.5-4.9 (300-440)	>5.0 (440)
Urine output, mL/d				<500	<200

NEW DEFINITION

Sepsis

Cr > 2

Infection
Dysregulated Host Response
Organ Dysfunction

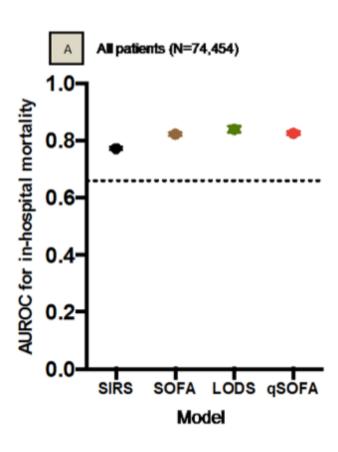
Septic Shock

Vasopressors & Lactate > 2

MR 10%

SOFA ≥2

qSOFA ≥2 Delta MS


 $RR \ge 22$

 $SBP \le 100$

SOFA ≥2

CONTROVERSIES?

Worth the Complexity? Implications for LMIC?

NEW DEFINITION

Sepsis

Infection

Dysregulated Host Response

Organ Dysfunction

MR 10%

SOFA ≥2

Septic Shock

Vasopressors & Lactate > 2

45M with fever, cough, and dyspnea for 3 days. T 40.0 C, BP 110/70, HR 100, RR 26. Looks acutely ill, lethargic and disoriented. Rales at the R lung base. Urine output 5/hr. WBC 15x109/L, Hb 8.2 g/dL, Platelets 180x109/L. Na 138, K 4.9, Cl 105, HCO3 18, Cr 2.0 Lactate 6 mEq/L. Urine analysis is unremarkable.

A sputum, urine, and blood cultures are sent.

Chest film - right lower lobe infiltrate.

This patient has:

- a) Bacteremia
- b) Sepsis New Sepsis 3 Definition
- c) Severe Sepsis Old Definition
- d) Septic Shock

GOALS of the LECTURE – TO REVIEW

- 1. New Definitions of Sepsis and Shock
- 2. New Surviving Sepsis Guidelines 2016

45M with fever, cough, and dyspnea for 3 days. T 40.0 C, BP 110/70, HR 100, RR 26. Looks acutely ill, lethargic and disoriented. Rales at the R lung base. Urine output 5/hr. WBC 15x109/L, Hb 8.2 g/dL, Platelets 180x109/L. Na 138, K 4.9, Cl 105, HCO3 18, Cr 2.0 Lactate 6 mEq/L. Urine analysis is unremarkable.

A sputum, urine, and blood cultures are sent. Chest film - right lower lobe infiltrate.

BP is now 85/30. Which of the following will improve survival?

- a) Albumin
- b) Blood Transfusion to achieve Hb >10
- c) Choice of Norepinephrine over Dopamine
- d) Fluids and Vasopressors to Target MAP >80 vs. >65.
- e) Early goal directed therapy to achieve MAP>65, urine > 0.5 ml/kg/h, CVP > 8 and SVO2 Sat > 70%.
- f) None of the Above

Rhodes. Crit Care Med 2017

SURVIVING SEPSIS GUIDELINES

OVERALL – 93 Recommendations

EARLY MANAGEMENT - 43 Recommendations

"STRONG" - 11
"BEST PRACTICE" - 13

Policy or Quality Indicators

Rhodes. Crit Care Med 2017

SURVIVING SEPSIS GUIDELINES

OVERALL – 93 Recommendations

EARLY MANAGEMENT - 43 Recommendations

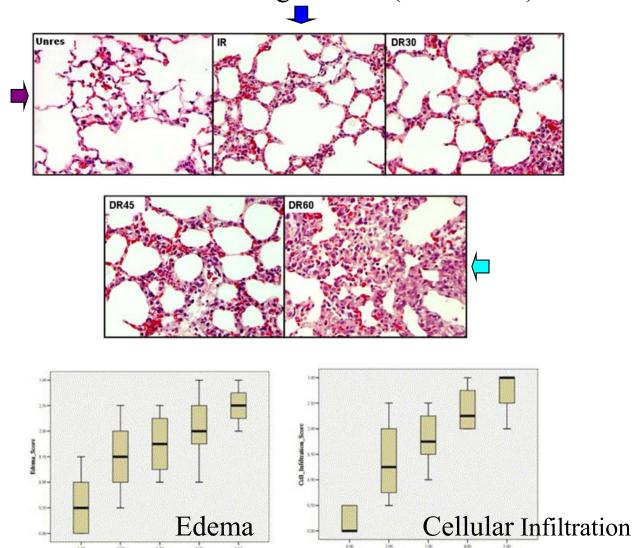
"STRONG" - 11
"BEST PRACTICE" - 13

Policy or Quality Indicators

7 SUMMARY Points

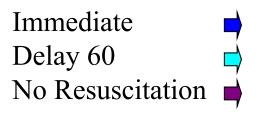
Immediate Resuscitation
Choice of Fluids
Hb Goal
Choice of Vasopressors
MAP Goal
Timing of Antibiotics
Source Identification & Control

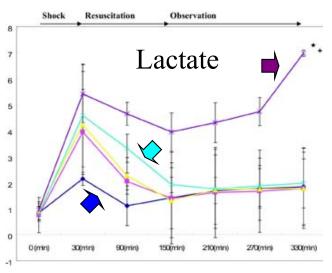
Immediate Resuscitation (BPS)

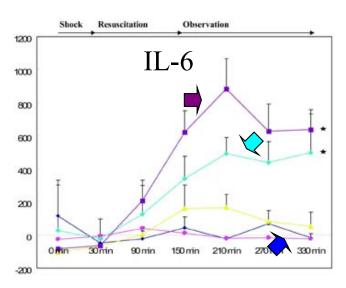

Lee. Ann Emerg Med 2007; 49: 37-44.

Rat model of hemorrhagic shock (30 minutes).

Immediate Resuscitation (BPS)


Lee. Ann Emerg Med 2007; 49: 37-44.


Rat model of hemorrhagic shock (30 minutes).



1 Unres, 2 IR, 3 DR30, 4 DR45, 5 DR60

1 Unres, 2 IR, 3 DR30, 4 DR45, 5 DR60

	VISEP Trial	6S Trial	CHEST Trial
	NEJM 2008	NEJM 2012	NEJM 2012
Population	537 S. Sepsis	798 S. Sepsis	7000 needing
	ICU Patients	ICU Patients	resuscitation
Intervention	10% Pentastarch	6% Hetastarch	6% Hetastarch
Comparison	LR	R Acetate	NS
Outcome	Death @ 28d	Death @ 90d	Death @ 90d
		or Dialysis	
Risk of Bias	High-Allocation	Low	Low

Mortality Benefit?

Other Findings?

	VISEP Trial	6S Trial	CHEST Trial
	NEJM 2008	NEJM 2012	NEJM 2012
Population	537 S. Sepsis	798 S. Sepsis	7000 needing
	ICU Patients	ICU Patients	resuscitation
Intervention	10% Pentastarch	6% Hetastarch	6% Hetastarch
Comparison	LR	R Acetate	NS
Outcome	Death @ 28d	Death @ 90d	Death @ 90d
		or Dialysis	
Risk of Bias	High-Allocation	Low	Low

Mortality Benefit?

No 27% v. 24% P = 0.48

No 18% v. 17% P = 0.26

MORE Death or RRT 51% v. 43%, P = 0.03

Other Findings?

MORE RRT -31% v. 19%, P = 0.001 MORE RRT - 7.0% MORE RRT - v. 5.8%, P = 0.04 22% v. 16%, P = 0.04

	SAFE Trial	ALBIOS Trial
	NEJM 2004	NEJM 2014.
Population	6997 ICU Patients	1818 S. Sepsis ICU
		Patients
Intervention	4% Albumin	20% Albumin for
		Target Albumin >3
Comparison	NS	Crystalloids
Outcome	Death @ 28d	Death @ 28d
Risk of Bias	Intermediate-Registry	Low

Mortality Benefit?

New Organ Failure?

	SAFE Trial	ALBIOS Trial
	NEJM 2004	NEJM 2014.
Population	6997 ICU Patients	1818 S. Sepsis ICU
		Patients
Intervention	4% Albumin	20% Albumin for
		Target Albumin >3
Comparison	NS	Crystalloids
Outcome	Death @ 28d	Death @ 28d
Risk of Bias	Intermediate-Registry	Low

Mortality Benefit?

No 21% v. 21% P = 0.87

No 32% v. 32%

P = 0.94

New Organ Failure?

No 53% v. 53%

P = 0.85

No 44.5% v. 45.5%

P = 0.99

Hb Target (Strong)

	Villenueva	TRISS Trial
	NEJM 2013	NEJM 2014
Population	921 Severe UGIB	998 Septic Shock
	Patients	Patients
Intervention	Hb Goal >9.0	Hb Goal >9.0
Comparison	Hb Goal >7.0	Hb Goal >7.0
Outcome	Death @ 45d	Death @ 90d
Risk of Bias	Low – Single Center	Low

Mortality Benefit?

Rebleeding Risk?

Hb Target (Strong)

	Villenueva	TRISS Trial
	NEJM 2013	NEJM 2014
Population	921 Severe UGIB	998 Septic Shock
	Patients	Patients
Intervention	Hb Goal >9.0	Hb Goal >9.0
Comparison	Hb Goal >7.0	Hb Goal >7.0
Outcome	Death @ 45d	Death @ 90d
Risk of Bias	Low – Single Center	Low

Mortality Benefit?

More Deaths with Hb >9.0 9% v. 5%, P = 0.02

No 45% v. 43% P = 0.44

Rebleeding Risk?

More Rebleeding with Hb >9.0 16% v. 10% P = 0.01

Choice of Vasopressors (Strong)

	SOAP II Study	VASST Trial
	NEJM 2010	NEJM 2008.
Population	1679 Patients with	802 Sepsis Patients on
	Shock	Norepinephrine
Intervention	Norepinephrine	Switch to Vasopressin
Comparison	Dopamine	Continue with NE
Outcome	Death @ 28d	Death @ 28d
Risk of Bias	Low	Low

Mortality Benefit?

Other Findings?

Choice of Vasopressors (Strong)

	SOAP II Study	VASST Trial
	NEJM 2010	NEJM 2008.
Population	1679 Patients with	802 Sepsis Patients on
	Shock	Norepinephrine
Intervention	Norepinephrine	Switch to Vasopressin
Comparison	Dopamine	Continue with NE
Outcome	Death @ 28d	Death @ 28d
Risk of Bias	Low	Low

Mortality Benefit?

No 48% v. 52%, P = 0.10

No 35% v. 39%

P = 0.26

Other Findings?

More arrhythmias with DOPA 24% v. 12%, P < 0.001

Serious adverse events 10% v. 10%, P = 1.00

MAP Goal? (Strong)

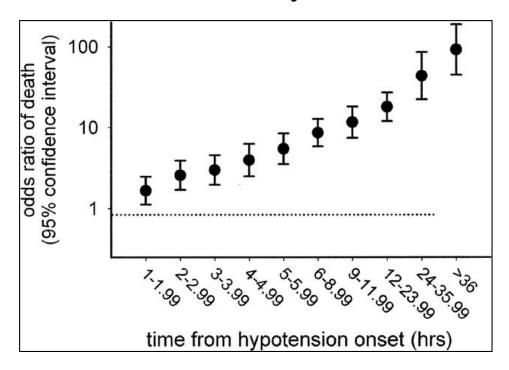
	SEPSISPAM Trial
	NEJM 2014
Population	798 Septic Shock Patients
Intervention	MAP Target 80-85
Comparison	MAP Target 65-70
Outcome	Death @ 28d
Risk of Bias	Low

Mortality Benefit?

MAP Goal? (Strong)

	SEPSISPAM Trial
	NEJM 2014
Population	798 Septic Shock Patients
Intervention	MAP Target 80-85
Comparison	MAP Target 65-70
Outcome	Death @ 28d
Risk of Bias	Low

Mortality Benefit?


No 37% v. 34%, P = 0.57

Timing of Antibiotics? (Strong)

Kumar. CCM 2006; 34: 1589-96.


Retrospective analysis 2731 adult septic shock patients.

Each Hour of Delay? 8% Increase in Mortality

Ferrer. CCM 2014; 42: 1749-55.

Retrospective analysis 17990 adult severe sepsis and septic shock patients.

Source Identification & Control (Strong)

Common Sources Of Septic Shock

Uncommon Sources Of Septic Shock

Sources That Typically Need Further Control (In Addition to Antibiotics) Lungs
Urinary Tract
Abdomen
(Central Venous Catheters)

Cellulitis

Osteomyelitis

Decubitus ulcer

Pneumocystis carinii

Parapneumonic effusions

Necrotizing fasciitis

Abscesses

Perforated viscus

Infected catheters & devices

	Rivers. NEJM 2001
Population	263 Severe Sepsis Patients
Intervention	Protocol to Achieve within 6 Hours (MAP
	>65, CVP >8–12, UO >0.5, SVO ₂ >70%.)
Comparison	Usual Care to Achieve within 6 Hours
	(MAP >65, CVP >8–12, UO >0.5.)
Outcome	Hospital Mortality
Risk of Bias	

Mortality Benefit?

	Rivers. NEJM 2001
Population	263 Severe Sepsis Patients
Intervention	Protocol to Achieve within 6 Hours (MAP
	>65, CVP >8–12, UO >0.5, SVO ₂ >70%.)
Comparison	Usual Care to Achieve within 6 Hours
	(MAP >65, CVP >8–12, UO >0.5.)
Outcome	Hospital Mortality
Risk of Bias	High Risk of Bias – Not Registration, Single
	Center, Conflict of Interest, Unequal Treatment

Mortality Benefit?

Yes 46% v. 30%, P = 0.01

	Process Trial	ARISE Trial	Promise Trial
	NEJM 2014	NEJM 2014	NEJM 2015
Population	1351 S. Sepsis	1600 Early S.	1260 S. Sepsis
	Patients @ US	Sepsis ER	Patients @ UK
	Academic	Patients Mostly	Hospitals Not
	Hospitals w/o	in Oceania	Using SVCSat
	Protocols		
Intervention	CVP >8, MAP >65, SVSat >70%, HCT >30%		
Comparison	Usual Care	No Protocol	Usual Care
Outcome	Death @ 60d	Death @ 90d	Death @ 90d
Risk of Bias	Low	Low	Low

Mortality Benefit?

	Process Trial	ARISE Trial	Promise Trial
	NEJM 2014	NEJM 2014	NEJM 2015
Population	1351 S. Sepsis	1600 Early S.	1260 S. Sepsis
	Patients @ US	Sepsis ER	Patients @ UK
	Academic	Patients Mostly	Hospitals Not
	Hospitals w/o	in Oceania	Using SVCSat
	Protocols		
Intervention	CVP >8, MAP >65, SVSat >70%, HCT >30%		
Comparison	Usual Care	No Protocol	Usual Care
Outcome	Death @ 60d	Death @ 90d	Death @ 90d
Risk of Bias	Low	Low	Low

Mortality Benefit?

No 21% v. 19%

P = 0.83

No 19% v. 19%

P = 0.90

No 30% v. 29%

P = 0.90

45M with fever, cough, and dyspnea for 3 days. T 40.0 C, BP 110/70, HR 100, RR 26. Looks acutely ill, lethargic and disoriented. Rales at the R lung base. Urine output 5/hr. WBC 15x109/L, Hb 8.2 g/dL, Platelets 180x109/L. Na 138, K 4.9, Cl 105, HCO3 18, Cr 2.0 Lactate 6 mEq/L. Urine analysis is unremarkable.

A sputum, urine, and blood cultures are sent. Chest film - right lower lobe infiltrate.

BP is now 85/30. Which of the following will improve survival?

- a) Albumin
- b) Blood Transfusion to achieve Hb >10
- c) Choice of Norepinephrine over Dopamine
- d) Fluids and Vasopressors to Target MAP > 80 vs. > 65.
- e) Early goal directed therapy to achieve MAP>65, urine > 0.5 ml/kg/h, CVP > 8 and SVO2 Sat > 70%.
- f) None of the Above

SUMMARY – Surviving Sepsis 2016 Guidelines

- 1. Resuscitation should be started immediately. (BPS)
- 2. IVF and/or vasopressors is generally indicated to achieve MAP >65. Higher MAP target does not improve clinical outcome. (Strong)
- 3. Crystalloid rather than colloid fluids should be initially used for resuscitation. (Strong)
- 4. Hb target should be >7.0 g/dL. Higher Hb targets do not improve clinical outcome. (Strong)
- 5. Among dopamine, norepinephrine or vasopressin, there is no survival advantage with the use of one vasopressor over another. However, norepinephrine is preferred over dopamine because of fewer side effects than dopamine. (Strong)
- 6. Appropriate broad-spectrum IV antibiotics should be started as soon as possible. (Strong)
- 7. Source of the sepsis should be identified and controlled asap. (BPS)
- 8. Targeting arbitrary goals or adhering to any specific protocols (e.g. EGDT) do not offer any clinical advantages beyond usual care.

SUMMARY – Surviving Sepsis 2016 Guidelines

- 1. Resuscitation should be started immediately. (BPS)
- 2. IVF and/or vasopressors is generally indicated to achieve MAP >65. Higher MAP target does not improve clinical outcome. (Strong)

ion.

- 3. Crystalloi (Strong) Resuscitate Early
- 4. Hb target outcome. Give Antibiotics Early
- 5. Among do with the u Source Identify and Control Early antage preferred over dopamine because of fewer side effects than dopamine. (Strong)
- 6. Appropriate broad-spectrum IV antibiotics should be started as soon as possible. (Strong)